Ich nehme an, dass Du weißt, wie MD5 funktioniert. Ein mit MD5 berechneter Hashwert besteht aus \(32\) Hexadezimalzahlen \(z\) mit \(z\in\{0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f\}\). Der MD5-Hash für das sehr schwache Passwort 'passwort' lautet z.B. \(e22a63fb76874c99488435f26b117e37\). Für jede der \(32\) Stellen gibt es \(|\{0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f\}|=16\) Möglichkeiten. Insgesamt sind somit \(16^{32}\) verschiedene Hashes möglich. Du kannst die Anzahl auch über einen anderen Denkansatz berechnen. Eine Hexadezimalzahl ist nämlich durch \(4\) Bit darstellbar. Folglich kann ein MD5-Hash auch als Bitfolge der Länge \(4\cdot 32=128\) aufgefasst werden.
Daraus ergeben sich \(|\{0,1\}|^{128}=2^{128}=\left(2^{4}\right)^{32}=16^{32}\) Kombinationsmöglichkeiten. Dein Ansatz scheint mir falsch zu sein. Ist die Rechnung nachvollziehbar?