Antwort mit KI erzeugt
Um zu zeigen, dass die Kreisel-Methode (Randomized Response) \(\epsilon\)-differentially private ist, analysieren wir die Wahrscheinlichkeiten von "True" und "False" gegeben, dass die wahre Antwort \( a \) entweder "Ja" (\(a = 1\)) oder "Nein" (\(a = 0\)) ist.
## Wahrscheinlichkeiten analysieren
Zuerst definieren wir die Wahrscheinlichkeiten der Ausgabe abhängig von der wahren Antwort \( a \):
1.
Wahre Antwort \( a = 1 \):
- Kreisel zeigt "Ja" mit Wahrscheinlichkeit \( p \).
- Kreisel zeigt "Nein" mit Wahrscheinlichkeit \( 1-p \).
- Teilnehmer sagt "True", wenn der Kreisel "Ja" anzeigt. Das passiert also mit Wahrscheinlichkeit \( p \).
- Teilnehmer sagt "False", wenn der Kreisel "Nein" anzeigt. Das passiert also mit Wahrscheinlichkeit \( 1-p \).
2.
Wahre Antwort \( a = 0 \):
- Kreisel zeigt "Ja" mit Wahrscheinlichkeit \( p \).
- Kreisel zeigt "Nein" mit Wahrscheinlichkeit \( 1-p \).
- Teilnehmer sagt "True", wenn der Kreisel "Ja" anzeigt. Das passiert also mit Wahrscheinlichkeit \( p \).
- Teilnehmer sagt "False", wenn der Kreisel "Nein" anzeigt. Das passiert also mit Wahrscheinlichkeit \( 1-p \).
Die Wahrscheinlichkeiten der gemeldeten Antworten sind also:
- \( \operatorname{Pr}[\text{True} \mid a = 1] = p \)
- \( \operatorname{Pr}[\text{False} \mid a = 1] = 1 - p \)
- \( \operatorname{Pr}[\text{True} \mid a = 0] = p \)
- \( \operatorname{Pr}[\text{False} \mid a = 0] = 1 - p \)
## Differential Privacy Abschätzung
Differential Privacy verlangt, dass für alle möglichen Outputs \( S \subseteq \{0,1\} \), wobei \(0 = \text{False}\) und \(1 = \text{True}\), gilt:
\( \frac{\operatorname{Pr}[A(x) \in S]}{\operatorname{Pr}[A(y) \in S]} \leq e^{\epsilon} \)
Da es nur zwei mögliche Outputs gibt ("True" und "False"), müssen wir das Verhältnis der Wahrscheinlichkeiten für beide Antworten überprüfen.
Verhältnis von Wahrscheinlichkeiten:
1.
True:
\(
\frac{\operatorname{Pr}[\text{True} \mid a = 1]}{\operatorname{Pr}[\text{True} \mid a = 0]} = \frac{p}{p} = 1
\)
2.
False:
\(
\frac{\operatorname{Pr}[\text{False} \mid a = 1]}{\operatorname{Pr}[\text{False} \mid a = 0]} = \frac{1 - p}{1 - p} = 1
\)
Diese Verhältnisse sind alle \(1\), also gilt in beiden Fällen schon:
\( \frac{1}{1} = 1 \leq e^{\epsilon} \)
Hieraus folgt, dass die Kreisel-Methode genau genommen \(\epsilon = 0\)-differentially private ist, da \(\epsilon\) die Ungleichung immer erfüllt, unabhängig vom Wert von \(\epsilon\).
## Zusammenfassung
Die Kreisel-Methode ist tatsächlich \(\epsilon\)-differentially private mit \(\epsilon = 0\), da die Wahrscheinlichkeiten für "True" und "False" unabhängig von der wahren Antwort \( a \) gleich sind. Die Abschätzung zeigt also, dass:
\( \epsilon = 0 \)
in Abhängigkeit von der Wahrscheinlichkeit \( p \). Die Methode hat einen höchstmöglichen Schutz der Privatsphäre, da die Wahrscheinlichkeitsverhältnisse immer 1 sind.