Hallo :-)
Auch wenn diese Frage schon länger zurückliegt, gehe ich mal drauf ein: a) ist richtig gelöst.
Die formale Definition für die Groß O-Notation lautet in etwa:
Es sei \(g: \mathbb{N}\rightarrow \mathbb{R}\). Dann ist$$ \mathcal{O}(g):=\{f:\ \mathbb{N}\rightarrow \mathbb{R}:\ \exists \alpha>0 \ \exists n_0 \in \mathbb{N} \ \forall n\geq n_0:\ \underbrace{0\leq f(n) \leq \alpha \cdot g(n)}_{0\leq f(n) \ \land f(n)\leq \alpha\cdot g(n) } \} $$
Zu b)
\(0\stackrel{n\geq 0}{\leq}T_2(n)=2n^3+7n+5\stackrel{n\geq 1}{\leq} 2n^3+7n^3+5\stackrel{n\geq 2}{\leq}{2n^3+7n^3+n^3}=\underbrace{10}_{=\alpha} n^3\). Es gibt also ein \(\alpha=10\) und ein \(n_0=2\), sodass für alle \(n\geq n_0=2\) die Abschätzung \(0\leq T_2(n)\leq \alpha \cdot n^3\) gilt. Also gilt per Definition \(T_2\in \mathcal{O}(n^3)\).
Zu c). Hier soll gezeigt werden, dass \(T_2\notin \mathcal{O}(n^2)\), also nicht \(T_2\in \mathcal{O}(n^2)\) gilt. Man soll also die Kontraposition der Groß O-Notation nachweisen:
$$ f \notin \mathcal{O}(g) \quad \Leftrightarrow \quad \forall \alpha>0 \ \forall n_0 \in \mathbb{N} \ \exists n\geq n_0:\ 0> f(n) \lor f(n) > \alpha \cdot g(n) $$
Wir müssen also in Anhängigkeit von \(\alpha>0\) und \(n_0\in \mathbb{N}\) ein \(n\geq n_0\) finden. sodass \(0> T_2(n)\) oder \( T_2(n) > \alpha \cdot n^2\) gilt.
Da \(T_2\) für alle \(n\in \mathbb{N}\) nichtnegativ ist, ist \(0>T_2\) immer falsch.
Also muss man \( T_2(n) > \alpha \cdot n^2\) beweisen, damit diese Oder-Aussage wahr wird.
Wähle \(n>\max\left(n_0,\frac{\alpha}{2}\right)>0\). Dann ist
\(\begin{aligned} &n>\frac{\alpha}{2}\\[10pt]&\Leftrightarrow 2n>\alpha\\[10pt]&\Leftrightarrow 2n-\alpha>0\\[10pt]&\Leftrightarrow n\cdot (2n-\alpha)>0\\[10pt]&\Leftrightarrow n\cdot (2n-\alpha)+7>7\\[10pt]&\Leftrightarrow n\cdot (n\cdot (2n-\alpha)+7)>7\cdot n\\[10pt]&\Leftrightarrow n\cdot (n\cdot (2n-\alpha)+7)+5>7\cdot n+5>0\\[10pt]&\Rightarrow \underbrace{n\cdot (n\cdot (2n-\alpha)+7)+5}_{2n^3-\alpha\cdot n^2+7n+5}>0\\[10pt]&\Leftrightarrow T_2(n)=2n^3+7n+5>\alpha\cdot n^2 \end{aligned}\)