Ich würde mal behaupten, dass ist ein Fangfrage ;-)
Denn was zeichnet den DFA und die Chomsky-Typ-3 Sprachen aus? -
Eine Menge p kann nur durch eine Menge m an Zuständen dargestellt werden. Ist kein p gegeben, dann kann kein DFA aufgestellt werden, da keine Regularien gelten.
Selbst mit einem NFA ist dies nicht möglich.
Um ein Mengenproblem zu lösen braucht man zwingen einen Speicher, der eine Menge simuliert, da dieser im FA nur durch Zustände dargestellt werden kann, ist zwingend gefordert, wie weit der FA zählen muss. Es ist nicht möglich, einen dynamischen finiten Automaten aufzustellen.
Da diese Sprache in der Grammatik Schreibweise ebenfalls die Regeln der Typ-3 Sprachen nicht erfüllt, sondern allenfalls die der Typ-2 Sprachen, ist zwingend ein PDA erforderlich, der durch den Kellerspeicher weitere Elemente speichern kann.
Man beachte zudem den Kommentar: "Kontextfreie Grammatiken seien 50%iger Bestandteil des WS". Naja, kontextfreie Sprachen können nicht mit einem DFA modelliert werden. Ich glaube der Prof wollte prüfen, ob man die endlichen Automaten wirklich verstanden hat.
Eine einfache Antwort in Form eines Satzes reicht wohl vollkommen aus. Einen DFA kann man meines Erachtens nur bilden, wenn p und s gegeben sind, das heißt die Teilpunkte kann man mit Zeichnen erreichen, die volle Punktzahl gibt's dann für Fachwissen ;-)
Beste Grüße