Antwort mit KI erzeugt
Encoder Schaltung
Ein Encoder ist eine digitale Schaltung, die n Eingangssignale in eine Binärzahl umwandelt. Für eine 8-zu-3-Bit Encoder-Schaltung hat man 8 Eingangssignale und 3 Ausgangssignale. Angenommen \(I_{0}\) bis \(I_{7}\) sind die Eingangssignale und \(O_{0}\), \(O_{1}\), \(O_{2}\) sind die Ausgangssignale. Da jedes \(O_{i}\) eine binäre Ausgabe hat, kann man für jede Ausgangsleitung eine Boolesche Funktion in Bezug auf die Eingangssignale formulieren.
- \(O_{2}\) repräsentiert das höchstwertige Bit (MSB), es ist 1, wenn \(I_{4}\) bis \(I_{7}\) gesetzt sind. Also: \(O_{2} = I_{4} + I_{5} + I_{6} + I_{7}\)
- \(O_{1}\) ist 1, wenn eines der Eingangssignale \(I_{2}\), \(I_{3}\), \(I_{6}\), oder \(I_{7}\) gesetzt ist: \(O_{1} = I_{2} + I_{3} + I_{6} + I_{7}\)
- \(O_{0}\) schließlich ist 1, wenn eines der Eingangssignale \(I_{1}\), \(I_{3}\), \(I_{5}\), oder \(I_{7}\) gesetzt ist: \(O_{0} = I_{1} + I_{3} + I_{5} + I_{7}\)
In einer Implementierung würde dies normalerweise durch eine Kombination von ODER-Gattern erreicht, wobei jedes Gatter für eine Ausgangslinie verantwortlich ist.
Demultiplexer Schaltung
Ein Demultiplexer nimmt eine Eingangsleitung \(D\) und leitet diese auf eine von mehreren Ausgangsleitungen um, in diesem Fall 8 Ausgangsleitungen \(O_{0}\) bis \(O_{7}\), basierend auf den Werten der Steuerleitungen \(C_{0}\), \(C_{1}\), \(C_{2}\).
Für den 3-zu-8 Demultiplexer kann die Auswahl der Ausgangsleitung als eine Kombination von UND-Gattern implementiert werden, wobei jedes Gatter eine bestimmte Kombination von \(C_{0}\), \(C_{1}\), \(C_{2}\) nimmt und mit \(D\) AND-verknüpft wird.
Hier ein Beispiel, wie man dies umsetzen könnte:
- \(O_{0} = \bar{C}_{2} \cdot \bar{C}_{1} \cdot \bar{C}_{0} \cdot D\)
- \(O_{1} = \bar{C}_{2} \cdot \bar{C}_{1} \cdot C_{0} \cdot D\)
- \(O_{2} = \bar{C}_{2} \cdot C_{1} \cdot \bar{C}_{0} \cdot D\)
- \(O_{3} = \bar{C}_{2} \cdot C_{1} \cdot C_{0} \cdot D\)
- \(O_{4} = C_{2} \cdot \bar{C}_{1} \cdot \bar{C}_{0} \cdot D\)
- \(O_{5} = C_{2} \cdot \bar{C}_{1} \cdot C_{0} \cdot D\)
- \(O_{6} = C_{2} \cdot C_{1} \cdot \bar{C}_{0} \cdot D\)
- \(O_{7} = C_{2} \cdot C_{1} \cdot C_{0} \cdot D\)
Die negierten Steuersignale (\(\bar{C}_{i}\)) bedeuten, dass \(C_{i}\) auf 0 gesetzt sein muss, während \(C_{i}\) alleine impliziert, dass \(C_{i}\) 1 sein muss. Die Multiplikation (\(\cdot\)) zeigt ein AND-Gatter an, so dass alle Bedingungen zugleich erfüllt sein müssen, damit das zugehörige \(O_{i}\) den Wert von \(D\) annimmt.