a) Ein Beispiel für ein Universum U könnte sein die Menge aller natürlichen Zahlen und eine Struktur s, in der die Funktionen f und g definiert sind, so dass f(y) = y+1 und g(d,f(y)) = d*f(y) . Der Ausdruck R(g(d,f(y))) ist also immer wahr und das Prädikat S(c,f(x)) ist nicht wahr.
b) Um zu zeigen, dass die Formel nicht allgemeingültig ist, müsste man eine Struktur finden, in der die Formel nicht erfüllt ist. Ein Beispiel dafür könnte sein, wenn man f(x) = x^2 und g(d,f(y)) = d+f(y) definiert. und c = 2 und d = 3. Dann ist R(g(d,f(y))) = 3 + (y^2) und S(c,f(x)) = x^2 = 2. In diesem Fall wäre die Formel nicht erfüllt.