Gegeben sind zwei Sprachen \(L_1,L_2\) über dem Alphabet \(\Sigma=\{a,b\}\). Die Sprache \(L_1\) sei die Sprache deren erstes und letztes Zeichen übereinstimmen, die Sprache \(L_2\) die Sprache der Wörter, auf denen auf jedes b ein a folgt. Nun soll ich reguläre Ausdrücke zu folgenden Sprachen angeben:
$$(1) L_1\cup L_2\\(2)L_1\cdot L_2\\(3)L_1\cap L_2\\(4)L_2\backslash L_1\\(5)L_1^c\\(6)L_2^c$$
Meine Frage dazu lautet, wie genau ich da vorgehen muss? Ich denke, dass es hilfreich wäre, wie die Sprachen \(L_1\) und \(L_2\) als reguläre Ausdrücke aussehen. Oder stehe ich da gerade ganz auf dem Schlauch und muss ganz anders vorgehen?
Sollte meine Idee prinzipiell richtig sein, so sehen meine regulären Ausdrücke wie folgt aus:
$$L_1:=((a\cdot (a\cup b)^*\cdot a)\cup (b\cdot (a\cup b)^* \cdot b))\\L_2:=(b^*\cdot (a\cdot b)^*)^*$$